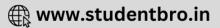


Problems based on units and dimensions

1.	Number of base SI units is					[MP PET 2003]
	(a) 4	(b) 7	(C)	3	(d)	5
2.	The unit of Planck's constant is	5				[RPMT 1999; MP PET 2003]
	(a) <i>Joule</i>	(b) <i>Joule</i> /s	(C)	Joule/ m	(d)	Joule- s
3.	The unit of reactance is					[MP PET 2003]
	(a) Ohm	(b) <i>Volt</i>	(C)	Mho	(d)	Newton
4.	The dimension of $\frac{R}{L}$ are					[MP PET 2003]
	(a) T^2	(b) <i>T</i>	(C)	T^{-1}	(d)	T^{-2}
5.	Dimensions of potential energ	y are				[MP PET 2003]
	(a) MLT^{-1}	(b) ML^2T^{-2}	(C)	$ML^{-1}T^{-2}$	(d)	$ML^{-1}T^{-1}$
6.	The dimensions of electric pot	ential are				[UPSEAT 2003]
	(a) $[ML^2T^{-2}Q^{-1}]$	(b) $[MLT^{-2}Q^{-1}]$	(C)	$ML^2T^{-1}Q$	(d)	$ML^2T^{-2}Q$
7.	The physical quantities not have	ving same dimensions are				[AIEEE 2003]
	(a) Speed and $(\mu_0 \varepsilon_0)^{-1/2}$		(b)	Torque and work		
	(c) Momentum and Planck's constant			Stress and Young's modul	lus	
8.	The dimensional formula for B				[MP PET 2002]	
	(a) $[ML^2T^{-2}\theta^{-1}]$	(b) $[ML^2T^{-2}]$	(C)	$[ML^0T^{-2}\theta^{-1}]$	(d)	$[ML^{-2}T^{-1}\theta^{-1}]$
9.	Which of the following quantit	ies is dimensionless				[MP PET 2002]
	(a) Gravitational constant	(b) Planck's constant	(C)	Power of a convex lens	(d)	None of these
10.	Which of the two have same d	imensions				[AIEEE 2002]

Get More Learning Materials Here : 📕


CLICK HERE

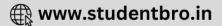
Regional www.studentbro.in

	(a) Force and strain		(b) Force and stress				
	(c) Angular velocity and free	quency	(d) Energy and strain				
•	The dimensions of pressure is	s equal to		[AIEEE 20			
	(a) Force per unit volume	(b) Energy per unit volume	(c) Force (d) Energ	ју			
	Identify the pair whose dimer	nsions are equal		[AIEEE 20			
	(a) Torque and work	(b) Stress and energy	(c) Force and stress (d) Force	and work			
	A physical quantity x depend	Is on quantities y and z as follows:	$x = Ay + B \tan Cz$, where A, B and C are contained as $C = C$	onstants. Which of			
	following do not have the sar	me dimensions		[AMU (Eng.) 20			
	(a) <i>x</i> and <i>B</i>	(b) C and z^{-1}	(c) y and B / A (d) x and	A			
	$ML^3T^{-1}Q^{-2}$ is dimension of			[RPET 20			
	(a) Resistivity	(b) Conductivity	(c) Resistance (d) None	e of these			
	Two quantities <i>A</i> and <i>B</i> have 1997]	e different dimensions. Which ma	hematical operation given below is physica	lly meaningful [CF			
	(a) <i>A</i> / <i>B</i>	(b) <i>A</i> + <i>B</i>	(c) <i>A</i> – <i>B</i> (d) None	e of these			
	Let $[\varepsilon_0]$ denotes the dime	ensional formula of the permitt	vity of the vacuum and $[\mu_0]$ that of the	permeability of			
	vacuum. If $M =$ mass, $L =$ ler	ngth, 7= time and /= electric cur	ent, then				
	(a) $[\mathcal{E}_0] = M^{-1}L^{-3}T^2I$	(b) $[\varepsilon_0] = M^{-1}L^{-3}T^4I^2$	(c) $[\mu_0] = MLT^{-2}I^{-2}$ (d) $[\mu_0] =$	$= ML^2T^{-1}I$			
	The dimension of quantity (L	L/RCV) is		[Roorkee 19			
	(a) [<i>A</i>]	(b) $[A]^2$	(c) $[A^{-1}]$ (d) None	e of these			
	The quantity $X = \frac{\varepsilon_0 LV}{t}$; here ε_0 is the permittivity of free space, L is length, V is potential difference and t is time. The						
	dimensions of X are same as	that of					
	(a) Resistance	(b) Charge	(c) Voltage (d) Curre	ent			
	The unit of permittivity of free	e space ε_0 is	[MP	PET 1993; MP PMT 20			
	(a) Coulomb/ Newton-metre	e	(b) <i>Newton-metre²/Coulomb²</i>				
	(c) <i>Coulomb²/(Newton-met</i>	tre) ²	(d) Coulomb ²	² /Newton-metre ²			
	Dimensional formula of capa	citance is	[CPMT 1978; M	P PMT 1979; IIT-JEE 19			
	() $x = 1 = 2 = 2 = 4 + 2$	(b) $ML^2T^4A^{-2}$	(c) $MLT^{-4}A^2$ (d) $M^{-1}A$	$L^{-2}T^{-4}A^{-2}$			
	(a) $M^{-1}L^{-2}T^4A^2$	(0) me i m					
	(a) M ⁻ L ⁻ T ⁺ A ⁻ The dimensional formula for		[EAMCET 1981; CBSE PMT 1991; CPMT 1978; J				
	. ,		[EAMCET 1981; CBSE PMT 1991; CPMT 1978; $M^2 L$	AFMC 1998; BCECE 20			

Get More Learning Materials Here : 💻

CLICK HERE

				Pb. P	MT 2002; UPSEAT 1999; BCI	ECE 2003]
	(a) $M^{-2}L^2T^{-2}$	(b) $M^{-1}L^3T^{-2}$	(c) <i>ML</i>	$L^{-1}T^{-2}$	(d) ML^2T^{-2}	
23.	How many wavelength of Kr^8	⁶ are there in one <i>metre</i>			[MNR 1985; UPSI	EAT 2000]
	(a) 1553164.13	(b) 1650763.73	(c) 652	189.63	(d) 2348123.73	
24.	Light year is a unit of			[M	1P PMT 1989; AFMC 1991; CI	PMT 1991]
	(a) Time	(b) mass	(c) Dist	tance	(d) Energy	
25.	<i>L</i> , <i>C</i> and <i>R</i> represent physical dimensions of frequency is	l quantities inductance, capacitar	nce and re	esistance respectively.		has the - JEE 1984]
	(a) 1/ <i>RC</i> and <i>R</i> / <i>L</i>	(b) $1/\sqrt{RC}$ and $\sqrt{R/L}$	(c) 1/	\sqrt{LC}	(d) <i>C / L</i>	
26.	In the relation $P = \frac{\alpha}{\beta} e^{-\frac{\alpha z}{k\theta}}$,	^{<i>p</i>} is pressure, <i>z</i> is distance , <i>k</i> is Bo	oltzmann c	constant and θ is tempe	erature. The dimensional	formula
	of β will be				[IIT-JEE (Screeni	ng) 2004]
	(a) $[M^0 L^2 T^0]$	(b) $[M^1 L^2 T^1]$	(C) [<i>M</i> ¹	${}^{1}L^{0}T^{0}$]	(d) $[M^0 L^2 T^1]$	
27.	-	ity be taken as the unit of accelera	tion and t	he velocity generated in	n a falling body in one se	econd as
	the unit of velocity then			nou unit of longth is 1	no otro	
	(a) The new unit of length is	-		e new unit of length is 1		
	(c) The new unit of length is	g" metre	(d) The	e new unit of time is $\frac{1}{g}$	secona	
28.		diation states that the rate of emis				
		ts absolute temperature that is Q			emperature and σ is a	universal
	(a) $E^2T^2L^{-2}K^{-2}$	h- time temperature' (E-L-T-K) sys			()) $p_{2} = 1 - 2 x - 4$	
		(b) $E^{-1}T^{-2}L^{-2}K^{-1}$. ,		(d) $ET^{-1}L^{-2}K^{-4}$	2
29.	5	on a body moving with a ve of drag, A = area of cross	,	5	5 ,	<i>D</i> .
	(a) $ML^{3}T^{-2}$	(b) $M^{1}L^{-1}T^{2}$	(c) <i>M</i> ¹	L ⁻¹ T ⁻²	(d) M ⁰ L ⁰ 7 ⁰	
30.	The dimensions of (angular mo	omentum)/(magnetic moment) are	2:			
	(a) $[M^{\beta} L T^{-2} A^{2}]$	(b) [<i>MA</i> ⁻¹ <i>T</i> ⁻¹]	(c) [<i>ML</i>	$(2^2 A^{-2} 7)$	(d) $[M^2 L^{-3} A T^2]$	
31.	The frequency <i>n</i> of vibrations	of uniform string of length / and	l stretchec	d with a force F is give	In by $n = \frac{P}{2l}\sqrt{\frac{F}{m}}$ where	p is the
	-	prating string and <i>m</i> is a constant of		-		
	(a) $ML^{-1} T^{-1}$	(b) $ML^{-3} T^{0}$	(c) <i>ML</i> ⁻	-2 7 0	(d) $ML^{-1} T^0$	
32.	Choose the wrong statement(s	5)				


r www.studentbro.in

Get More Learning Materials Here : 💻

(a) A dimensionally correct equation may be correct (b) A dimensionally correct equation may be incorrect (c) A dimensionally incorrect equation may be incorrect (d) A dimensionally incorrect equation may be incorrect A certain body of mass *M* moves under the action of a conservative force with potential energy *V* given by $V = \frac{Kr}{r^2 + a^{2'}}$ where x 33. is the displacement and a is the amplitude. The units of K are (a) Watt (d) None of these. (b) Joule (c) Joule-metre The Richardson equation is given by $I = AT^2 e^{-B/kT}$. The dimensional formula for AB^2 is same as that for 34. (d) *IK²/T* (a) /T² (c) *IK*² (b) *kT* 35. If the units of force, energy and velocity are 10 N, 100 J and 5 ms⁻¹, the units of length, mass and time will be (a) 10*m*, 5*kg*, 1s (b) 10*m*, 4*kg*, 2*s* (c) 10*m*, 4*kg*, 0.5*s* (d) 20*m*, 5*kg*, 2*s*. Problems based on error of measurement The period of oscillation of a simple pendulum is given by $T = 2\pi \sqrt{\frac{l}{g}}$ where / is about 100 cm and is known to 1mm accuracy. The 36. period is about 2.5. The time of 100 oscillations is measured by a stop watch of least count 0.1 s. The percentage error in q is (a) 0.1% (b) 1% (c) 0.2% (d) 0.8% 37. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. How much will be the maximum error in the estimation of the kinetic energy obtained by measuring mass and speed [NCERT 1990; Orissa JEE 1990] (a) 11% (b) 8% (c) 5% (d) 1% 38. While measuring the acceleration due to gravity by a simple pendulum, a student makes a positive error of 1% in the length of the pendulum and a negative error of 3% in the value of time period. His percentage error in the measurement of g by the relation $g = 4\pi^2 (l/T^2)$ will be (a) 2% (b) 4% (c) 7% (d) 10% 39. The random error in the arithmetic mean of 100 observations is x, then random error in the arithmetic mean of 400 observations would be (d) $\frac{1}{2}x$ (b) $\frac{1}{4}x$ (a) 4*x* (c) 2*x* 40. What is the number of significant figures in 0.310×10³ (a) 2 (b) 3 (c) 4 (d) 6 41. Error in the measurement of radius of a sphere is 1%. The error in the calculated value of its volume is (d) 7% (a) 1% (b) 3% (c) 5%

CLICK HERE

Get More Learning Materials Here : 📕

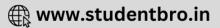
Units, Dimensions and Measurement 83

84 Units, Dimensions and Measurement

42.	The mean time period of sec	cond's pendulum is 2.00 <i>s</i> and mea	n absolute error on the time p	period is 0.05 <i>s</i> . To express maximum				
	estimate of error, the time period should be written as							
	(a) (2.00 ± 0.01) s	(b) (2.00 +0.025) <i>s</i>	(c) (2.00 ± 0.05) <i>s</i>	(d) (2.00 ± 0.10) s				
43.	A body travels uniformly a distance of (13.8 \pm 0.2) m in a time (4.0 \pm 0.3) s. The velocity of the body within error limits is							
	(a) (3.45 ± 0.2) ms ⁻¹	(b) $(3.45 \pm 0.3) ms^{-1}$	(c) $(3.45 \pm 0.4) ms^{-1}$	(d) (3.45 ± 0.5) <i>ms</i> ⁻¹				
44.	The percentage error in the a	bove problem is						
	(a) 7%	(b) 5.95%	(c) 8.95%	(d) 9.85%				
45.	The unit of percentage error	is						
	(a) Same as that of physical	quantity						
	(b) Different from that of ph	ysical quantity						
	(c) Percentage error is unit	ess						
	(d) Errors have got their own	n units which are different from tha	at of physical quantity measure	d				
46.	The decimal equivalent of 1/2	20 upto three significant figures is						
	(a) 0.0500	(b) 0.05000	(c) 0.0050	(d) 5.0×10^{-2}				
47.	If 97.52 is divided by 2.54, the	e correct result in terms of significa	nt figures is					
	(a) 38.4	(b) 38.3937	(c) 38.394	(d) 38.39				
48.	Accuracy of measurement is	determined by						
	(a) Absolute error	(b) Percentage error	(c) Both	(d) None of these				
49.	The radius of a sphere is (5.3	\pm 0.1) <i>cm</i> . The percentage error in	its volume is					
	(a) $\frac{0.1}{5.3} \times 100$	(b) $3 \times \frac{0.1}{5.3} \times 100$	(c) $\frac{0.1 \times 100}{3.53}$	(d) $3 + \frac{0.1}{5.3} \times 100$				
50.	A thin copper wire of length	/metre increases in length by 2% v	vhen heated through 10°C. Wh	nat is the percentage increase in area				
	when a square copper sheet	of length / metre is heated through	n 10° <i>C</i>					
	(a) 4%	(b) 8%	(c) 16%	(d) None of the above.				
51.	In the context of accuracy of correct	measurement and significant figur	es in expressing results of expe	eriment, which of the following is/are				
	(1) Out of the two measurements 50.14 <i>cm</i> and 0.00025 <i>ampere</i> , the first one has greater accuracy							
	(2) If one travels 478 <i>km</i> by r	ail and 397 <i>m</i> . by road, the total dis	stance travelled is 478 <i>km</i> .					
	(a) Only (1) is correct	(b) Only (2) is correct	(c) Both are correct	(d) None of them is correct.				

r www.studentbro.in

Get More Learning Materials Here : 💻


Answer Sheet (Practice problems)

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
b	d	а	с	b	a	с	а	d	с
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
b	a	d	а	а	с	с	d	d	а
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
b	b	b	с	a	a	a	d	d	b
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
d	с	с	с	b	с	b	с	d	b
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
b	с	b	с	с	a	а	b	b	а
51.									

Get More Learning Materials Here : 💻

c

